C3 – Quantitative Chemistry

Conservation of Mass

- Atoms cannot be created or destroyed during reactions.
- Mass of reactants = mass of products.

To show mass is conserved in a reaction: M, on the left-side must be same as the right side.

$$2Mg + O_2 \rightarrow 2MgO$$

 $(2 \times 24) + (2 \times 16) \rightarrow 2(24 + 16)$
 $48 + 32 \rightarrow 2 \times 40$
 $80 \rightarrow 80$

Reacting masses

Use conservation of mass to predict masses:

magnesium + oxygen → magnesium oxide 8g Both sides need to be equal: 10g - 8g = 4g of oxygen

Percentage Mass

- Percentage mass of an element in a compound

Mass of the element in compound x 100 Total mass of compound

Example Question:

Find the percentage mass of oxygen in magnesium oxide (MgO).

 A_r of magnesium = 24

 A_r of oxygen = 16

 M_r of MgO = 24 + 16 = **40** $= 0.4 \times 100 = 40\%$ % mass = 40-40% of the X 100 to mass of MgO make a % is oxvgen

Mass Changes

- Mass is always conserved in a reaction.
- Sometimes it may seem like the mass has increased/decreased.
- If a reactant is a gas mass may increase.

magnesium + oxygen → magnesium oxide

Oxygen is in the air before it combines with magnesium – you cannot find the mass of oxygen on the balance.

It will look like the mass has increased when it is re-weighed at the end.

Atomic mass (A,) and Relative Formula Mass (M,

- Atomic mass (A_r) is the mass number ie the mass of one atom
- Relative formula mass (M_r) = all the **relative** atomic masses (A,) of the atoms in a compound or molecule added up.

The Mole (HT only)

- Avogadro constant 6.02 x 10²³
- One mole contains 6.02 x 10²³ atoms or molecules
- The mass, in g, of one mole is the Ar (if an element) or Mr if a compound or molecular element

Mass = Mr x moles

Iron has a A_r of 56, so 1 mole of iron is 56 g and contains 6.02 x 10²³ atoms of iron

Ammonia (NH₃) has an Mr of 17, so 1 mole of ammonia has a mass of 17g. and contains 6.02 x 10²³ molecules of ammonia

If a **product** is a gas and the gas is able to escape the system - mass will decrease.

sodium carbonate → sodium oxide + carbon **★** dioxide

It will look like the mass has decreased as some of the atoms have been given off as gas and have escaped – so cannot be re-weighed.

С3	C3 – Quantitative Chemistry						
 2. 	What is meant by conservation of mass? Mass of reactants = ?	1.	How do you calculate the percentage mass of an element in a compound?	1.	Should mass change in a reaction?		
3.	The $M_{\rm r}$ of the left side of an equation must be the same as	2.	What do you do to convert a decimal into a percentage?		If a reactant is a gas, what will happen to the mass?		
					Why will it appear this has happened?		
1.	What does M _r stand for?	1.	How many atoms are in one mole?				
2.	What is the relative formula mass?				4. If a product is a gas, what will happen to the mas?		
3.	Where can you find the relative atomic mass (A _r) of an element?	2.	How do we know what the mass of one mole of an element is?	nappen to the mas.			
		3.	How do we know the mass of one mole of a compound?		Why will it appear this has happened?		

C3 – Quantitative Chemistry

Concentrations of Solutions

- Concentration = mass of dissolved substance in specific volume (eg dm³)
- More substance dissolved = more concentrated solution

 (g/dm^3)

(g)

(dm³)

Can be rearranged to find mass dissolved:

1000cm³ = 1dm³ cm³ → dm³ = divide by 1000.

Calculating mass in a given volume

If you have a known volume of a solution of known concentration then you can calculate the mass of dissolved solid.

E.g Calculate the mass of dissolved solid in 25cm³ of a 96g/dm³ solution

25c m³

 $96g/dm^3$ means 96g in every 1000cm

2.4g

Do the same to the other side (÷40) How do we get from 1000 to 25? (÷40)

Moles and Equations (HT only)

- You can use moles to help you write balanced symbol equations.

Example Question

18.4g of Sodium reacted with 6.4g of oxygen to give 24.8g sodium oxide. Use the masses to write the balanced equation.

Step	Example		
Write the equation for the reaction (unbalanced)	$Na + O_2 \rightarrow Na_2O$		
write down the mass or % given in the question	18.4 + 6.4 → 24.8		
Write the mass of one mole of each element or compound	23 32 62 (e.g 18.4 ÷ 23)		
Divide the mass given in question by the mass of one mole	0.8 0.2 0.4		
Turn the answers into whole number simple ratio	8 2 4 (cancel down) 4 1 2		
Put the numbers into the equation	4Na + O ₂ → 2Na ₂ O		

Calculating reacting masses (HT)

Example Question

Calculate the mass of calcium needed to make 11.2g Calcium oxide

Step	Calculation				
Write the balanced equation	2Ca + O ₂ → 2CaO				
Write the masses of each substance	80 + 32 → 112				
Write down the given mass in the question.	11.2				
Work out the 'scale' factor (ie what did you have to do to the original number to get to the desired mass	÷ 10				
Do the same to the other side	8g				

Limiting Reactants (HT only)

- If one reactant runs out before the other, then the reaction will stop.
- The reactant that runs out first in a reaction is known as the limiting reactant.

C3 – Quantitative Chemistry

- 1. What does concentration mean?
- 2. How can you make a solution more concentrated?
- 3. State the equation to calculate concentration in g/dm³.
- 4. What is the unit for volume?
- 5. How many cm³ are in a dm³?

Calculating mass in a given volume

g

- 1. What does 36.5g/dm³ mean?
- 2. Calculate the mass of dissolved solid in 25 cm³ of a 36.5g/dm³ solution

Moles and Equations (HT only)

12g of magnesium (Mg) reacted with 8g of oxygen (O_2) to produce 20g magnesium oxide (MgO). Use the masses to write a balanced equation

Step	Example
Write the equation for the reaction (unbalanced)	
write down the mass or % given in the question	
Write the mass of one mole of each element or compound	
Divide the mass given in question by the mass of one mole	
Turn the answers into whole number simple ratio	
Put the numbers into the equation	

- 1. What is a limiting reactant?
- 2. Complete the calculation: Calculate the mass of calcium needed to make 224g of calcium oxide

Step	Calculation		
Write the balanced equation	2Ca + O ₂ → 2CaO		
Write the masses of each substance			
Write down the given mass in the question.			
Work out the 'scale' factor (ie what did you have to do to the original number to get to the desired mass			
Do the same to the other side			
l .			